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STABILITY OF A HORIZONTAL FLUID LAYER WITH UNSTEADY HEATING
FROM BELOW AND TIME-DEPENDENT BODY FORCE

By Antur W. GOLDSTEIN

SUMMARY

The stability of a horizoutal layer of flawid in an
accelerated container heated unsteadily from below
was wnvestigated theoretically, asswiming an incom-
pressible fluid with small density changes resulting
from heating. The critical Rayleigh numbers based
on the over-all density differential are much higher
than for the static case, are dependent only on the
density distribution and instantaneous value of the
aceceleration, and are {ndependent of Prandtl nuwmber
and rate of change of temperature and body force
field. The initial motion corresponds to approxi-
mately the same cell shape as for the static caxse.
Rate of transition of temperature perturbations from
a stable to an wunstable condition is proportional tu
the rate of increase of the temperature gradient in the
region well removed from the walls; rate of transition
of the slow motion is proportional to the Prawdtl
number and rate of increase of the body force field.

INTRODUCTION

In devices that undergo transient heating and
require transient cooling, the use of liquid heat
sinks has been suggested. If a liquid conductor
is used to conduct heat from below to a sink above,
or if the sink material is melted by application of
heat from below, so that in either case there exists
eventually a horizontal layer of fluid, then an
unstable situation arises because a colder and
denser layer of fluid overlays a heated and less
dense layer in the gravitational field. These
layers tend to reverse their positions, and the
circulatory motion that thus arises provides a sub-
stantial increase in the effective heat conduction
by the fluid.  This motion does not begin immedi-
ately, and it is therefore of interest to find at what
time it does begin.

The related problem of stability of a horizontal
laver with steady and constant temperature gradi-
ent (arrived at by very slow heating) has received
considerable attention sinee the original theoreti-
cal work of Rayleigh (ref. 1) for free boundaries.
Referenee 1 showed that, instead of motion being
initiated whenever a cold layer overlays a warm
layer, a certain eritical temperature difference is
required to overcome the viscous drag and the
hieat conduetion (which acts to eliminate the mo-
tive foree derived from thermal gradients). The
stability eriterion is the value of the Rayleigh num-
ber Ra, which 1s equal to e ghpia/ux.  Jeflries
(refs. 2 and 3) obtained theoretical results for
rigid, conducting boundaries as well as free bound-
aries, while Pellew and Southwell (ref. 4) improved
the accuracy and among other results showed that
only nonoscillatory perturbations need be con-
sidered in establishing the condition of neutral
stability that separates the regions of stable and
unstable initial configurations.  Morton (ref. 5)

proved a similar theorem where the static-
temperature  gradient 18 assumed  nonconstant
bl

and when the fluid is free at top and bottom (the
original condition of Rayleigh). Theoretical pre-
dictions of eritical Rayleigh number of 1708 were
substantiated experimentally by Schmidt and
Milverton (ref. 6), Chandra (rel. 7), Schmidt and
Saunders (ref. 8), and Malkus (ref. 9).

When the layer Is very thin, then initially a
columnar motion oceurs (ref. 7); this may be
expected when the Rayleigh number is less than
1708 (helow which cellular motion does not oceur),
and the temperature difference is large enough
for a density variation A of about 2.1 percent (ref.
10). A further inerease in the temperature
difference will cause the Rayleigh number to
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reach the erttieal value, at which time the cellular
motion will take place. Thus, the eritical height
f for observing the columnar mode is

N 3.2
0.021 IR 1708
UK

When the layer thickness is greater than this
value, then the columnar mode is not observed.

In the case of a time-varving temperature
distributi-n, where the liquid layer is formed
from a melting solid heat sink, the liquid layer is
initially thin, and for rapid heating rates the
temperature  differential  will give rise to  the
columnar mode of motion.  Beecause of the small
veloeity close to the walls with sueh a mode of
flow, no significant inerease in heat-transfer rate
can he expeeted, and this mode is disre
the present analysis,

aarded

The case treated herein includes a time-variant
force ficld. In a ballistic missile that requires
cooling, the varying velocity of the missile will
impose a time-varying body force field on the
fluidd in addition to the gravitational body foree
field. A criterion for marginal stability is stated
and analvzed and used to investigate the effect of
unsteady heating and body forees on the stability
of the Huid layer.

SYMBOLS
Aey) function of =z, which separates the
functional dependences in
p—=s{raN0(zt) and w=1(x,y) w(zt)
¢y specifie heat at constant pressure
¢y specific heat at constant volume
*1
Fonn J p-sin mrz W, dz
o
( total force field resulting from gravity
and acceleration
« aceeleration due to gravity (in negative
s-direetion)
h height of layer in z*-direction
*1
Ko, J sin mwz W, dz
1]
k unit veetor in direction of =* mereasing
m,n positive integers
Dr Prandtl number, ¢,u/x
P pressure
L Rayleigh number
. b=} H

e J3Gp[p* (h %) —2*(0,t%)]/ux

Il’”n

1w
NN
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critical Rayleigh number for static
case (lowest mode of motion)

temperature of fluid

time

critical time (perturbations pass from
stable to unstable regime)

velocity of liquid

funection of z in approximate separated
form for w, w(z,t) = w,(t)W(2)

funection of =z that separates the fune-
tional dependences of
w=3Zw,[t) W ,(2), (n=1, 2, 3, ete.)

vertical component of motion, 174

coordinates

coeflicient of thermal expansion,
1 dp
o AT

index of rate of fluid expansion at
lower wall (see eq. (39))

ratio of specific heats

proportional eritical density differen-
tial, [*(ht*) — pol 'y

function of z,t that separates variables
m p=Ary) 6(z,t)

function of ¢t that separates variables in
0(z,0)==26,(t) sin nwz

function of ¢ in approximate separated
form for 8, 0(z,t) =8,(t)7(z)

conductivity

parameter indicating shape of etrcula-
tion eells

viscosity of fluid

density of fluid

reference density, p*(0,1%

function of z in approximate separated
form for 8, 8(z,t) =6,(t)r ()

funetion of z¢ that separates variables
i w=:A0y) w(zf)

—

function of ¢ that separates variables
n w=2w,(t) W,(z)

function of ¢ in approximate separated
form for w, w(z,t) = w(t) W{z)

bar indicates basic configuration, ap-
plied to p, T, V', w, and p; absence of
bar indicates perturbation variables

asterisk indicates variables with di-
mensious, applied to p, 7, ¢, V', w,
2,7, 7, and p; absenee of asterisk indi-
cates dimensionless, normalized vari-
ables
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Examples:

g normalized, dimension-
less density  perturbation,
p*/po

p* perturbation of fluid density

?  normalized dimensionless den-
sity in basic configuration

%
&—1>/A
Po

p* density of fluid in hasie con-
figuration
Subseripts:
er ralue at eritieal time 7.,
ot differentiation with respeet to = and ¢,

respeetively
PHYSICAL ASSUMPTIONS

A viscous, condueting, incompressible fluid with
constant viscosity, conductivity, and specifie heats
is assumed 1o be between two horizontal plates of
very large horizontal dimensions compared with
the vertical space between.,  The density, which is
supposed independent of the imposed pressure,
will vary a small amount throughout the fluid
because of temperature variations that may be
large for fluids with small thermal coeflicients of
volume expansion. A steady gravitational ficld
and a vertical aceeleration are assumed to be
acting on the fluid (fig. 1). Both plates are
assumed infinitely conducting.  Initially the temp-
erature is assumed uniform, but at some time the
bottom plate is heated while the upper plate is
kept at a constant temperature at all times. Since
the heating is uniform in the horizontal direction,
the fluid is expanded vertically.  The temperature
and density distribution that results from heating
the bottom plate and from the fluid conductivity,
together with the velocity of vertical expansion, is
hereinafter designated as the basie configuration.
This consists in a small vertical motion and a
temperature distribution for unsteady heating of
o conducting slab with a negligible modification
resulting from the convection.

Superimposed on this basic configuration is a
slow motion in the form of cellular patterns. The
veloeity is assumed so small that quadratic terms
in the equations of motion are considered negligible
compared with linear terms. In addition, there
is a small perturbation in the basic transient tem-
perature distribution. In the initial stages of the
heating, the veloeity and temperature perturba-

T is iz,

~

Z Do [T gl
.y | :
////////////////(//)//////////
)

() Configuration, coordinates, and foree field.
(1) Basie density distribution.
(¢) Pattern of slow ecellular motion.

Froure 1. Configuration, coordinates, density, and slow

moiion.

tions will e damped out because of the viscosity
and conduetivity of the fluid; but at some later
time the transient temperature gradient is large
enough to drive the fluid in slow motion, and the
motion will grow with time until the linear approx-
imation is no longer valid.  Briefly, the method of
analvsis consists in assuming a slow motion and a
small perturbation in the initial temperature con-
figuration and finding out whether the perturba-
tion and motion will be damped out in time or will
inerease indefinitely with time,

EQUATIONS OF MOTION
BASIC-CONFIGURATION AND PERTURBATION EQUATIONS

The equations of motion (nomentfuwm, con-
tinuity, energy) are expressed with each dependent
variable partitioned into a sum of the value for
the basic configuration (indicated with a bar 7)
and the value for the perturbation flow (no bary.
Thus, the velocity veetor 17 s written LGRS
where the asterisk indicates a variable with dimen-
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sions.  The bar is applied to p, 7, V7,
The asterisk is applied to p, T, 4, V7, w, x, 3, 2
and p.  Kach of the cquations is then split into
two components by the usual method of perturba-
tions, as follows,  First, the equations are assumed
to be satisfied by the basic configuration alone
(zero perturbation).  Secondly, the equation with
basic quantities is subtracted from the complete
original equation. This second equation is then
linearized by discarding terms that are quadratic
in slow velocities and perturbation components of

w, and p.

the variables, since these are assumed small com-
pared with the linear terms.

In the present case, before establishing the
perturbation equations, the coordinate system is
transformed from a stationary set to o moving set
that is considered to be moving at a variable speed
parallel to the vertical or z-axis, as in a space
vehiele  vertically  reentering  the  atmosphere.
The effect of this transformation is to add a ficld
force term to the momentum equations and 1o
leave the continuity and energy equations un-
moditied.  The process deseribed results in the
following equations for the basie flow:

Momentum:
-, ouw’* ow*  op* . o%u*
Pt e *~p*('+ ook
()
Continuity:
Oop ouw* « 0P .
a;’*+p SF o”* 0 (2)

Energy:

L (OT* L OTH _Fo 1
%, xS x| Y .

Pt ( o T e )T I:or* (B*>

-, O
K
-+ >-

XEN) PNt
(3)

In these equations the horizontal (r,y) veloeity
components have been assumed to be zero, and
the x5 derivatives zero by virtue of the uniform
conditions in horizontal direction.

The corresponding equations for the perturha-
tion flow are as follows:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Moner tum:

_. ol ow*  _._ ol o _ o
PY o TRRT e H R R
=
+kp*uw* g':l* — Vpr—p*ik

N

Continaity:

oD *
Dt S 0P e 0

c)r‘*
()
Energy .
o7 014 ofr* _ oT* 01
o ( YRR R "(fol* T g "’*'o:*,)
_/_)* (”Op*,},,m* OP*,%,“‘* OB*)
p* ot oz* ' oz*
(T (0 P Op*
(\,—)* p*2 P )(01*4 " O *)
o ow* ¢ ¥ 1 , i
:A’Vzl*}%uo*(’o* .;V-1*) 6)
where /- 1s the unit vector parallel to the z-axis.

The houndary conditions for the basic flow are
w* =0, T*=function of t*, af z*-=0

p*=pyowke-dh A, T =T, at z*==h

and ini ial conditions 7%= 7, =constant. For the
perturbations, V* is zero at either wall by the
no-slip condition, and because of the assumed
large wall conduetivity, T*=0 also. That is,

V*—0, T -0, at 2*=0

1V*=0, T*=0, at z*=h
Becaus  of the over-all expansion of the fluid, the
upper boundary will be displaced and b will vary
with tine.  The variation is neglected because of
the assiumption that the fluid expansion is small.

Temoerature variations may be expressed in
terms of density variations by means of the
therma' coeflicient of density change a:

1 dp* 1 dp* -

== = (

pu T po dT*
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where py 18 some standard density of the fluid.
Thus, the basic-low energy
ducible to

;*i Papy TG op*
apg [1_*—(‘1,( :I O/*+ oz *)

ok 0%* 4 (Ow*
4‘1Pn 0:z*?

while that for the perturbation flow {eq. (6)) be-

comes
+ 0 - )

E‘ZL[ 1’ apy —I(
apy c, (p*)2 O/*
* =k *
pC, apg P apyp) — ()P
P e = &P Pof?” 5 C )
T apy [ ('L:(P*)Z_F('V‘P*P*il( Of* +w

K ey ow* 7 du* l‘. -
VR Ay (g V) )

In both energy equations there occeurs the group
apeP * /e, (p%)?, which (sinee the density changes are
small) is approximately ap*/ep*.  Since p* is of
the order of py@h, the group is approximately
aGhje,.  For water in a normal gravitational field,
agle,=0.5< 107 em.  For mereury, agfe, = 1.3x
10~7fem. Therefore, there is a large class of prob-
lems for which afhfe, may be considered negligible,
and for this class the energy equations are modified
by discarding this term in comparison with 1.0.
By similar reasoning, the term app*fe,p*p* may
also be discarded, provided p* is assumed to be of
the order of p*Gh.  Ostrach (ref. 11) pointed out
that this term represents the ratio of compression
work to heating energy and is bound to be small
for fluids of small assumed thermal cocflicient of
volume expansion but may be large for fluids near
the critical state where o is large and in large
gravitational or accelerational fields such as
rotating machinery where fields of 10° ¢ are possi-
ble. The two energy equations now assume the
following forms:

dp*

op* kOt 4,u(XPu ow*
= ) (8)

w*»~V~ s ;
T p¥e, 0z% 3 pre, \ 0¥

and

Of*+l* .:‘*_HI" O:*+E* b{*+l )

4yap(,aw* ow* 1 e ‘
. 2 %k __ - - . *
75*01 Ve o*c, 0z* \0z* 3 vl ) ©)

equation (3) is re-

ORDER OF MAGNITUDE OF TERMS AND SCALING FACTORS

Basic configuration. -Ia order to simplify the
equations of motion, it is necessary Lo investigate
the order of magnitude of the various terms in the
equations so that the negligible terms may be
climinated.  Tor this purpose the vartables must
be scaled to new dimensionless variables of order 1,
so that the various terms may be compared.  The
obvious choice of seale for the lengths is £

*_ah
y*=yh (10)
sr=zh

therefore, if p, 1s
the density attained at the lower wall at the time
* when the instability develops, the dimensionless

The density variation is small;

density 50,8 for the basic motion is given by

5*: P()(,ITL'BA) (_1 1)
b =F*(0,1%) (1)
where
—% ®
S %)= 1,5(0,¢%) 0, A=" Gt (1)
Po

and A<i. I relations (10), (11), w*=wu, and
t*=th are set info the continuity equation (2)
(a,b are as yet undetermined constants), and it is
assumed that @ and ¢ are dimensionless and of
order 1, then there results

Ah +Ou*+ — ()B 0
ab(1+Ap) 1+Ap
Sinee A s assumed small, the last term is negligible
compared with the second, and the cequation
reduces to
Jdp | Ow
ot o—0 (12)
ot oz
when ab=Ah is assumed.
The energy cquation (8) is normalized by sub-
stituting the dimensionless variables of order 1.0:

N O*p:_anp l_OpA

4apd [ OWH>
) poc hi2 Oz of oz

3puc,b \ Oz

The conduction termt V¥ and the heat rate term
dp/0t are ecomparable if it is assumed that
b="h3pot,/x. This is equivalent to choosing a time
scale comparable with that for conduction of
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temperature disturbances from one wall to the
other.  The veloeity and time scales then result
in the dimensionless variables W and ¢, given by

e
oot h ,

(13)

f*:g.,(',/f“’[

. J

term of the

Yok

Shipied

y .

which is equal to 4 (Q(’”({> A? ( La., ('"), where €7,

3N e, : “,

fer, the time when instabilit v

and flu,, s the Ravleigh number at

Sinee foa, 15 of order 2000

or larger in the range of interest, A<l, and

ali hile, <1, the first (dissipation) term in the

energy equation may he disearded.  Also, the

Iast term may be disearded because A<, so

that the energy equation for the basie flow is

With these substitutions the first

energy  equation  gives  the  coeflicient

value of G al ¢
s attained,
F bery pl ol kp.

s the

__o

ot (14)

V=
which is the equation for transient conductive
heating of a slab. The l)()un(l-ug\' and initial
conditions are (00O — (4101, Lp(z,0)—1, and
Jte)=0.

With the new variables, the momentum equa-
tion for the basie flow is

op N (A PO PR pE W T
S : m .
Q. Hipd) (r’c,+ Lu., [‘i foJoid
_ e sy (o ow | oW
(1 p_\J(qu:qLoﬁ)
where

T Tl oh

Within the limits of the approximations, the solu-
tion is

- - (1=t
PRt

This pressure distribution results from the hody
foree field alone.

Order of magnitude and scaling factors in pertur-
bation equations. Secaling of the slow-motion and
temperature perturbation equations differs some-
what from the corresponding process in the basie-
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configuration  equations.  In  the latter, the
resulted from the expansion of the fluid,
and consequently the continuity equation is the
proper one for secking a new variable @ of order
unity. In the perturbation equations, the velocity
results from the gravitational field acting on the
fluid and is impeded by the viscous effect. Thus,
17 should be sealed from these two terms in the
cquaticn of motion.  The velocity of order unity
s then

veloeit

- B s
V= s !

= M ok

u 1200 o u
With
_»
I—Il(}c,pUA

(16)

p= o
pud

the equation of motion bhecomes

¥ ~-. oV A%y oW —oV
/’/'l: 2 +ILI(,, _f_All fhaw "0z
: 4 KD vAT _ ow
+kA(l PA)U oz -HL 1’1,,pu d

- —op—kp (f +v~'1'+;]5- WV (an)

With  he

cquation s

. A op
vl T EA{’&L >-

¥ ()u ’Op
trald +A( 5= T :l} (18)

and the energy equation,

same  substitutions, the continuity

al(i,, ()u'

[

—2 ¢ lﬂ)g"+v2
=(1{7) (O‘;+AF+2§+I";’"'3 )

+p3 (244

With the approximations A<l and y=1, the
perturbation flow satisfies the following equations:

(19
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Motion:

11/ aaz‘-:—~\‘p—kp (g———}—\""l'—l—}{v v (20)

Continuity:

v-1"=0 20
Energy:
Op Jp
Vio=~--+lla.,w (22)
ot R
These perturbation equations involve only p, from
the basic configuration, and this may be obtained
from equation (14) alone, which does not involve w.
It is not necessary to find the veloeity distribution
of the basic flow, and the equations of continuity
and momentum need not be used.

STABILITY CONDITION FROM

EQUATIONS

PERTURBATION

Following Rayleigh (ref. 1), the pressure and
velocity components V-7 and 17+j are eliminated
from the perturbation equation of motion (eq.
{20)) by first taking the divergence and then the
derivative with respect to 2. Secondly, the
Laplacian of the vertical component is subiracted,
and the continuity relation (eq. (21)) is employed,
vielding

1, ()u'i(’O?p

\ G
o o TN N 20250 99
PrY o oV p)(;”+vv e (28

The « and y variables are separated out by the

following assumptions (ref. 4):
p=2A{ra)8z,t)
w=_r1{rywlz,h

R A,
57T ogr P10

1
} (24)
|
J

The funection 1(ry) is periodic, and gives rise to
circulation cells if X*>>0. The parameter A indi-
eates the shape of the cells, as can be easily seen
for the ecase of two-dimensional cells where
0%4/0y2=0. Then A== sin A or sA= cos M. The
complete cell width is then a*/h=r=2x/x. Thus,
M indicates the ratio of cell height to cell width.
With these assumptions, equation (23) reduces

to
2 N/ OF 1 0 G ,
22 e N2 T — )2 s
<022 A ) ( z? A Pr bf> ws=—N¥ .. (25)

496502 —59——2
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and the energy equation (22) reduces to

o? o’ -
T e—Y Y= 2
(\a:2 A Df,) 0= la.wp. (26)

The previously given boundary conditions for the
temperature perturbations reduce to

§(0,6)=0(1,8)=0 (27)

The continuity equation (21) permits the boundary
conditions on the velocity perturbation vector 17
10 be restated in terms of the derivative dw/oz at

the boundary. The complete set of boundary

conditions on  the velocity perturbation  then
assumes the form
Ow(0,f) Ouwll,f)
0 =wll f)e=" - = ~ =) (28
¢ )T oz oz )

A CRITERION FOR MARGINAL STABILITY

Because of the homogencous form  of the
differential equations and the boundary conditions
at z=0,1, the solution of these equations is any
of a number of cigenfunctions, each associated
with a corresponding value of the Rayleigh number
Ra.,. Furthermore, homogeneous conditions are
required  at ralues of ¢ to  establish
solutions of this type. Beeause of the order of
differentiation with respect to ¢, it is possible to
seleet two such conditions.

Some physical insight will help establish these
conditions.  As the temperature of the bottom
wall is inereased, one may imagine various per-
turbations being imposed on the fluid.  Initially,
when the temperature difference is small, the
perturbations will be damped out. There will
come a time when one mode of motion will

certaln

continue with stationary amplitude and then grow
at later times.  This time of eritical or marginal
stability is designated as the critieal time ... T
is reasonable to determine this time in terms of
conditions related only to time in the immediate
vieinity of t=t,, since any growing motion may
he damped out later by appropriately scheduling
the temperature of the lower wall.  Furthermore,
it is also appropriate to require that both the
slow-motion velocity and the temperature dis-
tribution shall have growing amplitudes before
the temperature distribution can be regarded as
unstable, as the following example indicates.
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Assume a =tatic linear temperature distribution
known to be stable,  If a smaldl veloeity ix imposed
on the fluid with zero temperature perturbation,
then the temperature perturbation will initially
grow from zero before decaving.  Similarly. it is
possible to have a period with a growing velocity
perturbation during a condition of fluid stability.
Thus, instability vequires that the growth rates
for both the velocity amplitude and temperature
amplitude be cqual to or greater than zero. If
this requirement is combined with that for the
definition of the eritical time. then an eigenfune-
tion condition iz also satisfied by sctiing

ow ‘
01—4(),{/ /l',ﬁ

1of
g ot~

second homogencous condition be satisfied,

It s also required that Ottt and a

Both
requirements are satisfied by setting

of .
off().(/ fo.)

This sccond condition alse sceves the purpose of
defining the Teast stable perturbation, sinee the

fluid instability and the value may be ex-

1 08
9 ot
peeted to mercase with the inerease in tenipera-
ture of the lower wall. Thus, the condition
oo
ot

Rayvleigh number.

=0 ({-f., will vesult In a minimum critical

RELATION TO QUASI-STEADY SOLUTION, OSCILLATEONS

When equations (25) and (26) are solved at
the eritical time (t=t..), use of the preceding con-
ditions for marginal stability yvields the simplified
forms

(ao_;?_xl )-wT_AQG (t=t.) {201
2 .

xﬂ) 0= Ra,wp.  (t=1.) (301

ozt
Since £=t, may be regarded as a constant param-
eter to be determined from these equations, the
equations differ from those for the steady-state
case essentially in that 5, 18 a funetion of z. In

the steady ease, the solution for p results in p,=1.
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If the heating is slow, the curvature of the o profile
ismall, and 5= 1 will represent a good approxima-

ton 1o che mean.  In this ease,

R = Ra,=1707.8

where Nay is the eritical Ravleigh number for
the steady case.

In the present case, p, 1s not constant, and equa-
tions (2 and (30) are equivalent to the investiga-
tion of the stability of the density profile o as 1t
stands at any instant, neglecting variations of »
with time.  This situation exists if the time seale
for the temperature change in the svstem s large
compar~d with the time seale for instability to
develop. This point was made by Morton (ref,
), who investigated the steady-state case with a
nonconstant temperature gradient and shear-free
upper and lower surfaces. To use this approach
from th+ beginning, the time variations of & and
5. would be negleeted in equations (25) and (26).
Then the z and £ variables may be separated by
use of exponentials into a set of funetions

wy= W ()

8, ¢ gz
For anv  particular  cigenfunction  pair (o,(2),
W, (), which 1s at the state of eritical stability
(a,=0) the equations of motion (25) and (26)
then re luce to (29) and (30).  The ecigenvalues
for Ra. that result are therefore the same for
both mcthods.

The cevelopment of mstability may be expected
to invo ve only nonoscillatory motions from the
followinz considerations. 1 the quasi-steady ap-
proxinn tion is assumed suflicient for the deserip-
tion of he motion near the eritical time, then the
argument of Pellew and Southwell (ref. 4) indi-
cates that, for a straight static-density curve, the
Rayvleigh number is negative for oscillatory mo-
tions, aud the rate of growth is also negative.
That is, the fluid configuration is stable if an
oscillatcry slow motion is to exist.  For nonlinear
static-density distributions, some deviation of g,
from 1.0 can be imposed on the density distribu-
tion beore the rate of growth changes from a
negative to a positive value, if such a change takes
place at all.  Thus, the continuous nature of the
variation of the Ravleigh number and of the per-
turbation growth rate with variations in density
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distribution indicates that oscillatory motions will
exist only under stable conditions for a nontrivial
class of density distributions.

YARIATION OF STABILITY NEAR CRITICAL TIME

At the eritical time  (0w/l=00/0{=0). the
question arises whether the perturbations reach
a maximum value (transition from unstable to
stable equilibrium), or reach a minimum.  From
physical considerations, transition is from the
stable (o the unstable regime if the Rayleigh
number based on mstantancous values of the
over-all density difference and the stantaneous
field force 7 is nereasing.  The change of the
profile =hape from a more stable shape to a more
unsztable shape will have a sinnlar effeet.

An approximate set ol analytic conditions for
the assurance that the Hutd is passing into an
unstable state may be obtained if 10 is assumed
that the solution to the differential equations (25)
atid (260 may be approximated by the function
pair

w w2
0-=0,00)r()

region {=~{.. ‘The differential equations

(261 are. with these substitutions.

in the
(25) and {
dé,

Gl 7., — A7) — 0 7= w01
dt

(im0 b (o

When these are differentiated with respeet to
time,

o RN of == day
dt (re:=N7) die 7T Ra W (»qu;tTPg di )
doy (2 oy 1 ey cd ) g
dt (d:2 A )” Prode? (\(151’ A )U

) 8, dG@ G doy
N (,”dr a,m)

Wag (N 1 dey fd® Y e
(W_(il:‘l A )H Pr de ((122 A )H

0() lZG 2 (160 (IG lzeq)\)

=—Nr aq., dr°+(},, e (lr+Gp, dt
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At 7 = 1, these equations reduce to

() Byl7.-—Nr) =L, wp IV
(h) w, ( ((ll:‘_,—)\‘-’ )"H': — N\, T
126, R .o
() ——((“,2 7 Ra Wanp.,
o 1 dPw,f d? 6, dG
=y ‘dr<l V‘* Q. dr

Py 7 A2\ Py / d2 0\ e
() 5117;‘;4 ( (;:‘-’_)\-) " _1]’/" ‘(lifwT ((I:g_)\“) "

) 6, 2 30,
“_x’(u,dﬂ+dw)

Then, from (¢) angd (hy,

P 0 N e o
%dﬂ”(dﬁ—x)“ Ra, N5,
SHiee
d= ,‘ .
J,= J”(I’ ) W
Ty W \ .
'JBH?)+X( +Ml1d 0
then
1%,  Ra,z .
5“ —(‘l‘;l" = ']I .[ ” Pt (]»;
Thus, the temperature perturbation passes into

an unstable regime if p., > 0. Since the rate of
heat transfer upwards is proportional to p,, the
average weighted heat-transfer rate should be
inereasing.  The most important region for this
to be occurring is well in the body of the fluid,
since the values near the boundaries are multiplied
by W™, which is very small in the regions adjacent
to the walls,  The Prandtl number 2» and the
rate of change of the body foree field dG/dr do not
affect  the rate of temperature transition to
instability at the eritical time t = ¢,

For the slow-motion velocity, equation (d) is
multiplied by W and integrated, and after elimina-
tion of = hy equation (b) there is obtained

_Prdad,
TG, dt J,

1
Wy dtl

.];,EJ'[(f{(;l~>2+>\211'2]¢/:>u

where
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The rate of transition of the slow motion is, in
constrast to the temperature distribution, propor-
tional to the product of the Prandtl number and
the rate of inerease of the body forcee field and 1s
independent of the rate of change of the density
distribution. In the case where G is constant, the
slow motion is stationary and continues in this
condition while the temperature perturbation
passes into instability.  The behavior of the slow
motion is in this case shown by means of a higher-
order differential where equations (¢) and (b) are
combined:

_py i Ld%
J_ H(. df'

1 dPa,
Wy df‘

The slow motion therefore passes into instability
when ¢ is constant, under the same conditions for
the density distribution p(zt.) as when & is
inereasing.  In this case the veloeity
temporarily at a constant amplitude, and the rate
of transition is proportional to the product of the
Prandtl number and the rate of transition of the
temperature perturbation.

persists

CALCULATION OF CRITICAL RAYLEIGH NUMBER

The differential equations are treated by a
method analogous to that described by Chan-
drasekhar (ref. 12). First, the highest-order
spatial derivatives of equations (25) and (26) are
expanded in a sine series; these may be written

a? 2)‘2 _
o) @=
(Zw)om -3

When these two expansions are integrated term
by term and the boundary conditions inserted for
each term, there is obtained

> Vw,(#) sin nwz

(n*w24-N2)0,,(¢) sin urz

6=20,(t) sin nwz (31)
and
w= 2w, (HHW,(2) (32
where
W (2= e sin s
oSy PR NS R

5 )+Dn = )('osh )\(\:——%)]
‘, smh )\( ——)-}-(‘" cosh A ,_~>]

133)

+|: 1, sinh )\

+|:])
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and

_ 4 D
cosh M27 2 sih A2

nal(—)"+1]
th)\ ) (n2mw2-} A2

];TI e ,,,,(AYAH,
sinh A/2

2 cosh A2
I: :l nwl(—)"—1]
th A+N) (n 7r2+)\2

Substitution of these series into the differential
equations vields

dw, (d? )\ - h
2 at <‘d:2—)‘ ) e
G \ .
a2 b . -
=Prx 2 (‘(),, e w,,») 81N nws
2.9 1 39 (18,, . ) - -
lnzr—r)v)ﬂn—{—r(—l? sin nrz=Ra.p.>_w,W,
P

(34)

v

These equations are then multiplied by sin mwz
and in egrated; and the relation

K= {sin mrzW (2)dz

1 ' ST
,—(m27r2+)\2)J.\lll mmz (—1: —A ) W, izidz

is utilized to yield

] VI
(m2r24 A2 EAM = )
__1 32 ( ﬁ_ . " k
2 1 /)\ 2 \on G” wnl) (Sm 7’[':1)2]:;Y L.
"
18,
Z [:(17 +i n?r?—}—)\?)f),,] om—
n

where

—2 l‘)”crzwn [fmn
" J

(135)

Foaiti= [5: sin mwzWiz)dz

0, m#n
dn=

1

L om=n
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In the steady heating case (p,=1), F,,=K,,..
At the eritical time, the first of equations (35)
reduces to

0m (icr.) Wy, ( {cr‘) (36)

and the second to
E[(1(271"2”}*)\2)6,:;+2[l’(lc,-]f,,m]w":o,
n

t=te, m=123 ... (37)

For consisteney, the determinant of the coefficients
must be zero:

det |(2a? Ny én+21Ra,, IS, =0 (38)
This cquation determines the relation between
Ru., and the shape of the basic density profile o at
the eritical time.  The rate of change of tempera-
ture has no effect on the eritieal Rayleigh number
other than to affect the shape of the density curve
p at the eritical time.  Although the time seale
could have been chosen in a different manner, it
18 noteworthy that the present choice, which is
based on the natural heating period of the fluid
layer and does not involve fluid viscosity, gives a
Rayleigh number that is independent of the vis-
cosity. Thus, the critical Rayleigh number may
be said to be independent. of the Prandtl number
of the fluid. Also, the rate of varation of the
body force ¢ is not involved, but only its instan-
tancous value G, at the critieal time ¢,,.

Equation (38) will have a number of roots Ra,,
cach one of which will determine with (37) an
infinite sequence w,(t)/w (¢.,). With the addi-
tional conditions (36) and

dw, do,
ar —dp Tl

this 1s sufficient to uniquely determine by means
of (35) the sequence of functions w, )/ w (),
8.) wi(t;;). The sums (31) and (32) then give
the eigenfunctions « and @ for cach eigenvalue
Ra.,.

NUMERICAL RESULTS

To obtain numerteal results, a definite density
schedule at the lower wall (5(0,t)) is required, such
that p(0,00=1, p(0,t.,)=0. A simple function
of this type 1s
=Bl =Bl

50,1 ="
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Then
d _ -8
A PO =
Ry Blcr
2 B epie LS00

R T T

de?
For any fixed value of 8, a decrease of ¢, to small
values vields large values of the rate of density
deerease at the lower wall, and there are developed
density distributions p(z,t.,) with large gradients
at the Tower wall and small values in the remainder
of the fluid. If 8 is not large, then when ¢, is
small, gt 1s small, and

d - 1‘ d —

U)~-— p(0
dar P =y Pl

Thus, when ¢, is small, small and moderate values
of 8 have no significant influence.  When gf,, is
not small, the effect of an ncrease in 8 1s to in-
crease the initial rate of density decrease at the
lower wall, at the expense of the rate at the eritical
time.  Thus, large values of g vield density distri-
butions p(=¢.,) with more nearly uniform gradients
than those for small values of 8. Clearly, the
limits g »0, 8 > correspond respectively to uni-
form temperature rise at the lower wall and to
sudden heating of the lower wall, with the latter
type tending to more nearly Iimear density distri-
butions.

Solution of the heat equation with the assumed
boundary and initial conditions vields;

(1 _F_ﬂ"’z)zz(-?,f,): 1 —¢ 8

COS e
+~BE A O
nir?

The functions I, where

—n~1r‘-t) (40)

(1—eg Bler) ‘,,,,L—J {(1—egBeryp, sin mwzW, dz
(41)

are listed m table I with W7, for m=1, 2, n=:1, 2.
Solution of the determinant (38) vields values of
lla,,, which are plotted in figure 2. Each point on
these curves 1s the minimum value of Ra., from a
curve of Ra,, as a function of X, Thus these are
critical Rayleigh numbers for the most unstable
cell shape. The cell-shape parameter for minimum
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Critical Rayleigh number, Ra.,

4 6 8 2 14

72 x Critical time,

-Critical Rayleigh number dependence on
critieal time and heating rate.

Fiaure 2.

value of Ra,, is plotted in figure 3, and values are
tabulated in table IT. The trends of Ra., with ¢,
and 3 both indicate that the effect of alarge density
gradient near the lower wall and a small gradient
in the body of the fluid is to stabilize the fluid.
Thus, if the lower wall temperature is being
rapidly incereased, cellular motion is delayed until
Rayleigh numbers, hundreds of times the value
for very slow heating, are reached. The trend
with slow temperature change rates (¢, large and
3>>0) is toward a value of Ra,~=1715 (the value
that is ealeulated with the second-order determi-
nant—the true value is 1707.8). Variation in cell
shape X\ is seen to be slight.

Figure 2 can be used in a practical case where
it. is possible to fit well the density schedule
2*(0,t%) at the lower wall by a curve of the type

7*(0,0) —7*(0,0) _ (1—¢#9)A
p*(0,0)

| —gPler

The value of 3 may be determined by the change
of the slope dp*/df at time £=¢, from =0 as

05 (97
o =g [ e
(df t, dt /,

T |

Al (

1035 .
3 \
x 6
8 a \
€ N
[
S 2r
@ 1 | L B WL
g /
_ 10%; {/1
o g 2
o . .
= i ]
S B _25 2 Pz

o228 Z= ]

4
] "3 e //
] =%
2 5 75 = 425 2
| ? 2 ,
|03 } l
31D 315 320 325 330 335 340 345

Cell-shape parameter, A

Variation of cell-shape parameter with eritical
Rayleigh number.

Fraure 3.

The mstantancous value of the Rayleigh number is
knowr: at any time [(3*(0,0)/5*(0,t) — 1) is sub-
stituted for G,A), so that

Ra/G _ Ra,jtiy FRa./G.,
l—e 88 1—e B | —¢ e

may be caleulated. Thus, the intersection of the

L Ra N, g G
l.u:(\'l _—6,}5;) (=)

with tie curve on figure 2 for the proper value of g
identities Ra,, and t,,.

curve

SUMMARY OF RESULTS

For a layer of incompressible fluid in a varying
body force field heated from below so that the
densitv at the lower boundary varies with time
by a r-latively small amount, the following results
were found for instability with respect to cellular
motio 1:

1. The velocity resulting from the vertical ex-
pansion of the fluid does not affect its stability.

2. T'he eritical Rayleigh number at whieh the
fluid passes through neutral stability is determined
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by the shape of the density curve at the instant
of transition and is independent of past history,
rate of change of the density profile, the Prandtl
number, and rate of change of body foree field.

3. For a nontrivial class of density distributions,
the stationary condition on the slow-motion and
temperature perturbations yields a neutral sta-
bility condition for a nonoscillatory motion that
passes from a stable to an unstable condition at
minimum Rayleigh number.

4. For rapid heating, the lower boundary will
not. benefit from internal, convective heat transfer
until the temperature has inereased well bevond
that for attainment of internal circulation for very
slow heating. The density differential was calcu-
lated as high as 600 times the static value.

5. The shape of the eireulation eells for mini-
mum critical Rayleigh number varies only slightly
with heating rate.

6. The rate at which the density perturbation
mcreases after the eritical time is independent of
the Prandtl number and of the rate of change of
the gravitational field. The velocity increases at
a rate proportional to the product of the Prandtl
number and the rate of growth of the gravita-
tional field. For a constant body foree field, the
perturbation growth rate is zero at the critieal
time but grows as a result of a higher-order time
derivative that is proportional to the product of
the Prandtl number and the rate of growth of the
density perturbation.

Lewis ReskearcH CeNTER
NATIONAL ARRONAUTICS AND SPACE ADMINISTRATION
CreveLAND, Ottto, October 8, 1958.
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TABLE T1.---PARAMETERS FOR NEUTRAL STABILITY

B=n | 8 = 9r2/4 ; B8==25n2/4 i B=49r2/4
Blee | o
i |
‘ Ra > 1073 A | Rag, 1073 } A Ra X103 } A ‘ Ra., X103 ‘ by
! \
8>0
0. 025 12, 434 ‘ 3. 385 . - - o L I
. 05 6. 0252 3. 331 092, 657 3. 815 398. 41 3.312 1061. 9 | 3215
.10 3. 4029 3. 241 34. 751 3. 345 146. 14 3. 308 383. 04 3299
15 2. 7609 3. 196 19. 995 3. 380 81. 370 3.312 211, 86 3. 201
L2 2. 4262 3172 13. 816 3. 390 53. 707 3.324 139. 11 3. 313
.3 2, 1243 3. 150 8.5820 | 3.375 30. 009 P 3.358 | T6. 687 3. 310
4 1. 9912 3. 138 6.338)  3.345 20. 052 3. 382 50. 121 3. 332
.h 1. 9185 3. 131 51126 i 3. 315 14. 832 3. 304 36. 013 3.351
.75 1. 8300 3.121 36172 | 3.255 R 8922 - 3.382 19. 881 3.380
1.0 1. 7893 3118 R i _ 6.3900 | 3.354 13. 253 ’ 3 401 |
1.1 . : - 2,957 | 3206 ... s oo , S
1. 25 1. 7663 3117 25500 | 3,190 5. 0419 1 3,324 9, 8258 3.308 |
1. 50 1. 9517 3. 116 2, 3110 3.175 | 1. 2086 3.205 7. 7879 ‘ 3. 383
.75 1. 7419 3. 116 2, 1505 3. 160 3. 6476 3.2690 | 6. 4573 | 3. 364
2.0 - , 2, 0385 3. 150 32474 S 5. 5297 } 3. 345
2.5 - 1. 8990 3. 140 2, 7223 3,215 1.3364 | 3.310
3.0 - ! R _ 2, 4020 3. 190 3.6146 | 3. 280
3.5 ) ! i} ) B 2. 1934 3174 3. 1401 | 3250
4.0 . , ~ L 2, 0521 3. 160 28103 ' 3230
6. 0 B B o 1. 8000 3.135 2. 1539 3.175
8.0 B . : _ P _ 1 - 1. 9104 3. 150
10. 0 R _ _ . - - 1. 8046 3. 140
3<0
— Bler 8- w4 3= a4 B+ ‘
0.1 12. 559 3.385 | 13.080 3. 38 14. 245 ‘ 3.38 |
.3 1. 3854 3.28 | 1. 8382 3.29 6.0293 | 3.30 ‘
5 3. 1459 3.22 36338 | 3.23 5. 0410 3.27
7 2, 6698 319 32008 321 4. 7946 3. 26
.9 2, 4270 317 2.9993 . 320 1. 7255 ‘ 3,255 ‘
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